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MARS: the benefits of using range-based measures to forecast volatility

In this white paper, we present how to evaluate volatility forecasts 
by using a (noisy) proxy and discuss the advantages in using 
range-based volatility to forecast volatility in lieu of the classical 
close-to-close estimator. 

The first section introduces how to incorporate the range-based 
measures into standard volatility models to generate forecasts. 
The second section discusses the choice of the scoring function to 
compute the loss series of the forecasts when the true process is 
unobservable. This notably enables the comparison of different 
volatility models, highlighting the additional information carried by 
intraday data when forecasting daily volatility. The third section 
presents how range-based exogenous variables can help build 
more accurate forecasts for longer horizons. The final section 
concludes and surveys potential future research perspectives.

Introduction

Range-based volatility measures present numerous advantages 
when estimating the volatility process of financial time series. 
As discussed in the previous paper of our Multi-Asset Research 
Series,1 these estimators capture intraday patterns without the 
burden of handling the full intraday path. A natural question, 
however, arises as a consequence: are range-based measures 
useful to generate more accurate volatility forecasts? 

Risk-based portfolio construction is directly linked to the ability to 
build forecasts of volatility and translate them into investment 
rules. In standard settings, forecasts’ quality is evaluated by 
comparing forecasts with the ex-post realisation of the studied 
variable through a loss function: for example the mean square 
error. Studying the loss functions for different competing models is 
also the basis for model selection. Evaluating volatility forecasts is, 
however, more complex. As the true volatility process is a latent, 
unobservable process, one cannot directly compute the loss 
inherent in the forecasting exercise. 

1 Chareyron, F., and Royer, J. (2023). A primer on range-based volatility estimators. Lombard Odier Investment Managers - Multi Asset Research Series.

https://am.lombardodier.com/fr/en/contents/news/investment-viewpoints/2023/february/1148-NA-NA-NA-volatility.html
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Similarly to the realised volatility measure (see for example 
Andersen et al. (2021)), range-based measures are model-free 
estimators that consistently estimate the path of the latent volatility 
process without the requirement to specify its dynamic. While this 
approach has the advantage of curbing misspecification risk, it 
limits the ability to generate forecasts as there is no explicit link 
between the estimator and its previous values. 

To remediate this issue, different approaches have been proposed: 
from directly leveraging the persistence of the proposed noisy 
estimator (as in Corsi (2009)), to combining the model-free 
estimator with prominent conditional volatility models. In this white 
paper, we will focus on the latter, as such models remain the 
workhorse for financial econometrics applications. Nevertheless, 
the forecast evaluation procedure detailed in the following sections 
remains valid independently of the model considered. 

Conditional volatility models directly describe the dynamic of the 
volatility process, and it is known that they are difficult to 
outperform in a volatility forecasting exercise. Amongst the myriad 
of different specifications, two have particularly caught the 
attention of practitioners as they allow capturing stylised facts of 
financial returns while remaining very parsimonious: the GARCH 
equation introduced by Bollerslev (1986) and the Exponential 
GARCH (EGARCH) of Nelson (1991). In the former, the variance 
dynamic is given by:
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 is a white noise. 
In this setting, a 1-day ahead forecast for the volatility can be readily 
made once the parameters of the model have been estimated:
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However, this model ignores potential additional information that is 
not captured by close-to-close returns. To circumvent this issue, 
practitioners augmented the conditional variance equation (1) by 
including exogenous variables, yielding the GARCH-X equation 
(see e.g. Han and Kristensen (2014) and Francq and Thieu (2019))
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ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12 + 𝛾𝛾(ln𝑋𝑋𝑡𝑡−1 − E[ln𝑋𝑋𝑡𝑡−1]). 

𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = Λ𝜎𝜎𝑡𝑡
2𝛽𝛽  

Λ = exp(𝜔𝜔) exp(−𝛼𝛼√2𝜋𝜋)exp (
𝛼𝛼2
2 ) [2Φ(𝛼𝛼)].  

𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 
𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 
𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 

ℎ1𝑡𝑡  

ℎ2𝑡𝑡  

ℎ𝑡𝑡 

ℎ̂𝑡𝑡: 

E[ℒ(ℎ𝑡𝑡, ℎ1,𝑡𝑡)]  ⋛ E[ℒ(ℎ𝑡𝑡, ℎ2,𝑡𝑡)] ⇔ E[ℒ( ℎ̂𝑡𝑡, ℎ1,𝑡𝑡)]  ⋛ E[ℒ( ℎ̂𝑡𝑡, ℎ2,𝑡𝑡)] 

ℎ̂𝑡𝑡  

E[ ℎ̂𝑡𝑡|ℱ𝑡𝑡−1] =  ℎ𝑡𝑡.  

 

ℒ(�̂�𝜎2, ℎ; 𝑏𝑏) =   

{
 
 

 
 (𝑏𝑏 + 1)

−1(𝑏𝑏 + 2)−1(�̂�𝜎2𝑏𝑏+4 − ℎ𝑏𝑏+2) − (𝑏𝑏 + 1)−1ℎ𝑏𝑏+1(�̂�𝜎2 − ℎ) for 𝑏𝑏 ∉ {−1,−2}

ℎ − �̂�𝜎2 + �̂�𝜎2ln �̂�𝜎
2

ℎ for 𝑏𝑏 = −1
�̂�𝜎2
ℎ − ln �̂�𝜎

2

ℎ − 1 for 𝑏𝑏 = −2

. 

 

ℒ(�̂�𝜎2, ℎ)QLIKE =  ln(ℎ) + 
�̂�𝜎2
ℎ . 

 

where 

I N T E R N A L 
 

I n t e r n a l 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝜎𝜎𝑡𝑡−12  (1) 

𝜀𝜀𝑡𝑡 = 𝜎𝜎𝑡𝑡𝜂𝜂𝑡𝑡  

𝜂𝜂𝑡𝑡  

𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = 𝜔𝜔 + (𝛼𝛼 + 𝛽𝛽)𝜎𝜎𝑡𝑡2. 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝜎𝜎𝑡𝑡−12 + 𝛾𝛾𝑋𝑋𝑡𝑡−1 

𝑋𝑋  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12 + 𝛾𝛾(ln𝑋𝑋𝑡𝑡−1 − E[ln𝑋𝑋𝑡𝑡−1]). 

𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = Λ𝜎𝜎𝑡𝑡
2𝛽𝛽  

Λ = exp(𝜔𝜔) exp(−𝛼𝛼√2𝜋𝜋)exp (
𝛼𝛼2
2 ) [2Φ(𝛼𝛼)].  

𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 
𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 
𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 

ℎ1𝑡𝑡  

ℎ2𝑡𝑡  

ℎ𝑡𝑡 

ℎ̂𝑡𝑡: 

E[ℒ(ℎ𝑡𝑡, ℎ1,𝑡𝑡)]  ⋛ E[ℒ(ℎ𝑡𝑡, ℎ2,𝑡𝑡)] ⇔ E[ℒ( ℎ̂𝑡𝑡, ℎ1,𝑡𝑡)]  ⋛ E[ℒ( ℎ̂𝑡𝑡, ℎ2,𝑡𝑡)] 

ℎ̂𝑡𝑡  

E[ ℎ̂𝑡𝑡|ℱ𝑡𝑡−1] =  ℎ𝑡𝑡.  

 

ℒ(�̂�𝜎2, ℎ; 𝑏𝑏) =   

{
 
 

 
 (𝑏𝑏 + 1)

−1(𝑏𝑏 + 2)−1(�̂�𝜎2𝑏𝑏+4 − ℎ𝑏𝑏+2) − (𝑏𝑏 + 1)−1ℎ𝑏𝑏+1(�̂�𝜎2 − ℎ) for 𝑏𝑏 ∉ {−1,−2}

ℎ − �̂�𝜎2 + �̂�𝜎2ln �̂�𝜎
2

ℎ for 𝑏𝑏 = −1
�̂�𝜎2
ℎ − ln �̂�𝜎

2

ℎ − 1 for 𝑏𝑏 = −2

. 

 

ℒ(�̂�𝜎2, ℎ)QLIKE =  ln(ℎ) + 
�̂�𝜎2
ℎ . 

 

 denotes a positive exogenous variable. Examples of 
financial metrics used as an exogenous variable include bid-ask 
spreads (Bollerslev and Melvin, 1994), futures open interest 

(Girma and Mougoué, 2002) or trading volumes (Lamoureux and 
Lastrapes, 1990). Setting 

I N T E R N A L 
 

I n t e r n a l 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝜎𝜎𝑡𝑡−12  (1) 

𝜀𝜀𝑡𝑡 = 𝜎𝜎𝑡𝑡𝜂𝜂𝑡𝑡  

𝜂𝜂𝑡𝑡  

𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = 𝜔𝜔 + (𝛼𝛼 + 𝛽𝛽)𝜎𝜎𝑡𝑡2. 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝜎𝜎𝑡𝑡−12 + 𝛾𝛾𝑋𝑋𝑡𝑡−1 

𝑋𝑋  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12 + 𝛾𝛾(ln𝑋𝑋𝑡𝑡−1 − E[ln𝑋𝑋𝑡𝑡−1]). 

𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = Λ𝜎𝜎𝑡𝑡
2𝛽𝛽  

Λ = exp(𝜔𝜔) exp(−𝛼𝛼√2𝜋𝜋)exp (
𝛼𝛼2
2 ) [2Φ(𝛼𝛼)].  

𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 
𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 
𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 

ℎ1𝑡𝑡  

ℎ2𝑡𝑡  

ℎ𝑡𝑡 

ℎ̂𝑡𝑡: 

E[ℒ(ℎ𝑡𝑡, ℎ1,𝑡𝑡)]  ⋛ E[ℒ(ℎ𝑡𝑡, ℎ2,𝑡𝑡)] ⇔ E[ℒ( ℎ̂𝑡𝑡, ℎ1,𝑡𝑡)]  ⋛ E[ℒ( ℎ̂𝑡𝑡, ℎ2,𝑡𝑡)] 

ℎ̂𝑡𝑡  

E[ ℎ̂𝑡𝑡|ℱ𝑡𝑡−1] =  ℎ𝑡𝑡.  

 

ℒ(�̂�𝜎2, ℎ; 𝑏𝑏) =   

{
 
 

 
 (𝑏𝑏 + 1)

−1(𝑏𝑏 + 2)−1(�̂�𝜎2𝑏𝑏+4 − ℎ𝑏𝑏+2) − (𝑏𝑏 + 1)−1ℎ𝑏𝑏+1(�̂�𝜎2 − ℎ) for 𝑏𝑏 ∉ {−1,−2}

ℎ − �̂�𝜎2 + �̂�𝜎2ln �̂�𝜎
2

ℎ for 𝑏𝑏 = −1
�̂�𝜎2
ℎ − ln �̂�𝜎

2

ℎ − 1 for 𝑏𝑏 = −2

. 

 

ℒ(�̂�𝜎2, ℎ)QLIKE =  ln(ℎ) + 
�̂�𝜎2
ℎ . 

 

 as the range-based measure of 
volatility thus easily augments the volatility forecast with intraday 
patterns captured by the range-based measure.

Similarly, the EGARCH model of Nelson, in which the volatility 
dynamic is given by 

I N T E R N A L 
 

I n t e r n a l 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝜎𝜎𝑡𝑡−12  (1) 

𝜀𝜀𝑡𝑡 = 𝜎𝜎𝑡𝑡𝜂𝜂𝑡𝑡  

𝜂𝜂𝑡𝑡  

𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = 𝜔𝜔 + (𝛼𝛼 + 𝛽𝛽)𝜎𝜎𝑡𝑡2. 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝜎𝜎𝑡𝑡−12 + 𝛾𝛾𝑋𝑋𝑡𝑡−1 

𝑋𝑋  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12 + 𝛾𝛾(ln𝑋𝑋𝑡𝑡−1 − E[ln𝑋𝑋𝑡𝑡−1]). 

𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = Λ𝜎𝜎𝑡𝑡
2𝛽𝛽  

Λ = exp(𝜔𝜔) exp(−𝛼𝛼√2𝜋𝜋)exp (
𝛼𝛼2
2 ) [2Φ(𝛼𝛼)].  

𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 
𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 
𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 

ℎ1𝑡𝑡  

ℎ2𝑡𝑡  

ℎ𝑡𝑡 

ℎ̂𝑡𝑡: 

E[ℒ(ℎ𝑡𝑡, ℎ1,𝑡𝑡)]  ⋛ E[ℒ(ℎ𝑡𝑡, ℎ2,𝑡𝑡)] ⇔ E[ℒ( ℎ̂𝑡𝑡, ℎ1,𝑡𝑡)]  ⋛ E[ℒ( ℎ̂𝑡𝑡, ℎ2,𝑡𝑡)] 

ℎ̂𝑡𝑡  

E[ ℎ̂𝑡𝑡|ℱ𝑡𝑡−1] =  ℎ𝑡𝑡.  

 

ℒ(�̂�𝜎2, ℎ; 𝑏𝑏) =   

{
 
 

 
 (𝑏𝑏 + 1)

−1(𝑏𝑏 + 2)−1(�̂�𝜎2𝑏𝑏+4 − ℎ𝑏𝑏+2) − (𝑏𝑏 + 1)−1ℎ𝑏𝑏+1(�̂�𝜎2 − ℎ) for 𝑏𝑏 ∉ {−1,−2}

ℎ − �̂�𝜎2 + �̂�𝜎2ln �̂�𝜎
2

ℎ for 𝑏𝑏 = −1
�̂�𝜎2
ℎ − ln �̂�𝜎

2

ℎ − 1 for 𝑏𝑏 = −2

. 

 

ℒ(�̂�𝜎2, ℎ)QLIKE =  ln(ℎ) + 
�̂�𝜎2
ℎ . 

 

where the use of the logarithm alleviates the positivity constraint 
on the coefficients and can be augmented by the range-based 
measure as proposed by Brandt and Jones (2006). When setting 

I N T E R N A L 
 

I n t e r n a l 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝜎𝜎𝑡𝑡−12  (1) 

𝜀𝜀𝑡𝑡 = 𝜎𝜎𝑡𝑡𝜂𝜂𝑡𝑡  

𝜂𝜂𝑡𝑡  

𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = 𝜔𝜔 + (𝛼𝛼 + 𝛽𝛽)𝜎𝜎𝑡𝑡2. 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝜎𝜎𝑡𝑡−12 + 𝛾𝛾𝑋𝑋𝑡𝑡−1 

𝑋𝑋  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12 + 𝛾𝛾(ln𝑋𝑋𝑡𝑡−1 − E[ln𝑋𝑋𝑡𝑡−1]). 

𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = Λ𝜎𝜎𝑡𝑡
2𝛽𝛽  

Λ = exp(𝜔𝜔) exp(−𝛼𝛼√2𝜋𝜋)exp (
𝛼𝛼2
2 ) [2Φ(𝛼𝛼)].  

𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 
𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 
𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 

ℎ1𝑡𝑡  

ℎ2𝑡𝑡  

ℎ𝑡𝑡 

ℎ̂𝑡𝑡: 

E[ℒ(ℎ𝑡𝑡, ℎ1,𝑡𝑡)]  ⋛ E[ℒ(ℎ𝑡𝑡, ℎ2,𝑡𝑡)] ⇔ E[ℒ( ℎ̂𝑡𝑡, ℎ1,𝑡𝑡)]  ⋛ E[ℒ( ℎ̂𝑡𝑡, ℎ2,𝑡𝑡)] 

ℎ̂𝑡𝑡  

E[ ℎ̂𝑡𝑡|ℱ𝑡𝑡−1] =  ℎ𝑡𝑡.  

 

ℒ(�̂�𝜎2, ℎ; 𝑏𝑏) =   

{
 
 

 
 (𝑏𝑏 + 1)

−1(𝑏𝑏 + 2)−1(�̂�𝜎2𝑏𝑏+4 − ℎ𝑏𝑏+2) − (𝑏𝑏 + 1)−1ℎ𝑏𝑏+1(�̂�𝜎2 − ℎ) for 𝑏𝑏 ∉ {−1,−2}

ℎ − �̂�𝜎2 + �̂�𝜎2ln �̂�𝜎
2

ℎ for 𝑏𝑏 = −1
�̂�𝜎2
ℎ − ln �̂�𝜎

2

ℎ − 1 for 𝑏𝑏 = −2

. 

 

ℒ(�̂�𝜎2, ℎ)QLIKE =  ln(ℎ) + 
�̂�𝜎2
ℎ . 

 

 
as the range-based measure computing using the approach of 
Garman and Klass (1980), the EGARCH-X equation thus becomes

I N T E R N A L 
 

I n t e r n a l 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝜎𝜎𝑡𝑡−12  (1) 

𝜀𝜀𝑡𝑡 = 𝜎𝜎𝑡𝑡𝜂𝜂𝑡𝑡  

𝜂𝜂𝑡𝑡  

𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = 𝜔𝜔 + (𝛼𝛼 + 𝛽𝛽)𝜎𝜎𝑡𝑡2. 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝜎𝜎𝑡𝑡−12 + 𝛾𝛾𝑋𝑋𝑡𝑡−1 

𝑋𝑋  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12 + 𝛾𝛾(ln𝑋𝑋𝑡𝑡−1 − E[ln𝑋𝑋𝑡𝑡−1]). 
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 are a sequence of independent 
and identically distributed centered Gaussian variables with unit 
variance, the forecast for the variance is given by
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𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝜎𝜎𝑡𝑡−12 + 𝛾𝛾𝑋𝑋𝑡𝑡−1 

𝑋𝑋  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12 + 𝛾𝛾(ln𝑋𝑋𝑡𝑡−1 − E[ln𝑋𝑋𝑡𝑡−1]). 

𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = Λ𝜎𝜎𝑡𝑡
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where, denoting 

𝜂𝜂𝑡𝑡 

Φ 

𝜔𝜔 

𝛼𝛼 

𝛽𝛽 

𝛾𝛾RB 

𝛾𝛾RV 

ℒ 

𝑘𝑘- 

𝛼𝛼 + 𝛽𝛽 ≅ 1, 

ă 

 

 

+ 

- 

= 

𝑏𝑏 = 0 

𝑏𝑏 = −2. 

 

 the cumulative density function of a normally 
distributed variable, 
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2𝛽𝛽  
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In the remainder of this note, we will consider eight competing 
models, four for the GARCH and their counterparts in the EGARCH 
framework. First, the standard implementation relying solely on 
daily squared returns as variance estimate. Second, Model-RB 
denotes the conditional volatility model augmented by the Garman-
Klass range-based measure. Third, Model-RV denotes the 
conditional volatility model augmented by the realised volatility 
measure computed using 5-minute returns, and finally, Model-X 
denotes the conditional volatility model augmented by both the 
range-based and realised volatility measures. The different models 
are fitted on daily S&P 500 returns ranging from 2000 to 2019.

To illustrate the differences of behaviour of those models, we 
present in figure 1 the one-day ahead volatility forecasts obtained 
by fitting those models on S&P 500 returns.

From a measure to a forecast
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distribution of the test statistic non-standard and we follow 
Francq and Zakoïan (2009) to obtain the correct threshold. 
Notably, when including both range-based and realised volatility 
measures, the range-based covariate becomes insignificant as it is 
redundant with the other intraday based measure. Nevertheless, as 
noted in the previous edition of the Multi-Asset Research Series, 
the difficulty of obtaining trustworthy realised volatility measures 
provides an argument in favour of the range-based version.

Table 1 presents the value of the parameters in the eight 
competing models. Interestingly, the coefficient of the exogenous 
variable is always different from zero, highlighting the relevance of 
including either the range-based measure or the realised volatility 
as exogenous variables. The last line of the table presents the 
result of the test for the hypothesis:

 ·
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Note that in the GARCH case, the positivity of the parameters 
implies a boundary restriction that renders the asymptotic 
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FIG. 1 ONE-DAY AHEAD S&P 500 VOLATILITY FORECASTS FOR 
COMPETING (E)GARCH(-X) MODELS.

Source: LOIM. Data as of June 2019.
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Test
Source: LOIM. A check mark indicates that the coefficient in the test hypothesis is significantly 
different from 0 at the 95%-confidence level according to the classical likelihood ratio statistics.



For professional investor use only. Please read important information at the end of this document.
Lombard Odier Investment Managers · MARS: the benefits of using range-based measures to forecast volatility · May 2023 Page 5/8

MARS: the benefits of using range-based measures to forecast volatility

While Table 1 provides arguments in favour of the inclusion of 
range-based measures as exogenous variables in standard 
conditional volatility models, the test statistic only gives an 
in-sample vision of the benefits. To strengthen confidence in the 
robustness of these results, one must assess the gains in an 
out-of-sample exercise. Evaluating point forecasts usually means 
defining a scoring function between the forecast and the ex-post 
realisation of the variable of interest (see e.g., Gneiting (2012)). 
This procedure cannot be readily implemented for volatility 
forecasts as the variable of interest is unobservable.

A common solution is to compute the loss between the forecast 
and an imperfect proxy of the variable of interest. This, however, 
complicates the comparison of the losses between two forecasts 
as they are not measured as a distance to the true latent process. 
Additionally, volatility comparison can be very sensitive to 
extreme observations, which renders the use of classical loss 
functions such as the mean square error (MSE) impractical.

To circumvent these issues, Patton (2011) studied different usual 
loss functions to determine their robustness. More precisely, a loss 
function 

𝜂𝜂𝑡𝑡 

Φ 

𝜔𝜔 
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𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = 𝜔𝜔 + (𝛼𝛼 + 𝛽𝛽)𝜎𝜎𝑡𝑡2. 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝜎𝜎𝑡𝑡−12 + 𝛾𝛾𝑋𝑋𝑡𝑡−1 

𝑋𝑋  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12 + 𝛾𝛾(ln𝑋𝑋𝑡𝑡−1 − E[ln𝑋𝑋𝑡𝑡−1]). 

𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = Λ𝜎𝜎𝑡𝑡
2𝛽𝛽  

Λ = exp(𝜔𝜔) exp(−𝛼𝛼√2𝜋𝜋)exp (
𝛼𝛼2
2 ) [2Φ(𝛼𝛼)].  

𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 
𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 
𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 

ℎ1𝑡𝑡  

ℎ2𝑡𝑡  

ℎ𝑡𝑡 

ℎ̂𝑡𝑡: 

E[ℒ(ℎ𝑡𝑡, ℎ1,𝑡𝑡)]  ⋛ E[ℒ(ℎ𝑡𝑡, ℎ2,𝑡𝑡)] ⇔ E[ℒ( ℎ̂𝑡𝑡, ℎ1,𝑡𝑡)]  ⋛ E[ℒ( ℎ̂𝑡𝑡, ℎ2,𝑡𝑡)] 

ℎ̂𝑡𝑡  

E[ ℎ̂𝑡𝑡|ℱ𝑡𝑡−1] =  ℎ𝑡𝑡.  

 

ℒ(�̂�𝜎2, ℎ; 𝑏𝑏) =   

{
 
 

 
 (𝑏𝑏 + 1)

−1(𝑏𝑏 + 2)−1(�̂�𝜎2𝑏𝑏+4 − ℎ𝑏𝑏+2) − (𝑏𝑏 + 1)−1ℎ𝑏𝑏+1(�̂�𝜎2 − ℎ) for 𝑏𝑏 ∉ {−1,−2}

ℎ − �̂�𝜎2 + �̂�𝜎2ln �̂�𝜎
2

ℎ for 𝑏𝑏 = −1
�̂�𝜎2
ℎ − ln �̂�𝜎

2

ℎ − 1 for 𝑏𝑏 = −2

. 

 

ℒ(�̂�𝜎2, ℎ)QLIKE =  ln(ℎ) + 
�̂�𝜎2
ℎ . 

 

 or some 
conditionally unbiased variance proxy 

I N T E R N A L 
 

I n t e r n a l 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝜎𝜎𝑡𝑡−12  (1) 

𝜀𝜀𝑡𝑡 = 𝜎𝜎𝑡𝑡𝜂𝜂𝑡𝑡  

𝜂𝜂𝑡𝑡  

𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = 𝜔𝜔 + (𝛼𝛼 + 𝛽𝛽)𝜎𝜎𝑡𝑡2. 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝜎𝜎𝑡𝑡−12 + 𝛾𝛾𝑋𝑋𝑡𝑡−1 

𝑋𝑋  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12 + 𝛾𝛾(ln𝑋𝑋𝑡𝑡−1 − E[ln𝑋𝑋𝑡𝑡−1]). 

𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = Λ𝜎𝜎𝑡𝑡
2𝛽𝛽  

Λ = exp(𝜔𝜔) exp(−𝛼𝛼√2𝜋𝜋)exp (
𝛼𝛼2
2 ) [2Φ(𝛼𝛼)].  

𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 
𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 
𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 

ℎ1𝑡𝑡  

ℎ2𝑡𝑡  

ℎ𝑡𝑡 

ℎ̂𝑡𝑡: 

E[ℒ(ℎ𝑡𝑡, ℎ1,𝑡𝑡)]  ⋛ E[ℒ(ℎ𝑡𝑡, ℎ2,𝑡𝑡)] ⇔ E[ℒ( ℎ̂𝑡𝑡, ℎ1,𝑡𝑡)]  ⋛ E[ℒ( ℎ̂𝑡𝑡, ℎ2,𝑡𝑡)] 

ℎ̂𝑡𝑡  

E[ ℎ̂𝑡𝑡|ℱ𝑡𝑡−1] =  ℎ𝑡𝑡.  

 

ℒ(�̂�𝜎2, ℎ; 𝑏𝑏) =   

{
 
 

 
 (𝑏𝑏 + 1)

−1(𝑏𝑏 + 2)−1(�̂�𝜎2𝑏𝑏+4 − ℎ𝑏𝑏+2) − (𝑏𝑏 + 1)−1ℎ𝑏𝑏+1(�̂�𝜎2 − ℎ) for 𝑏𝑏 ∉ {−1,−2}

ℎ − �̂�𝜎2 + �̂�𝜎2ln �̂�𝜎
2

ℎ for 𝑏𝑏 = −1
�̂�𝜎2
ℎ − ln �̂�𝜎

2

ℎ − 1 for 𝑏𝑏 = −2

. 

 

ℒ(�̂�𝜎2, ℎ)QLIKE =  ln(ℎ) + 
�̂�𝜎2
ℎ . 

 

:

I N T E R N A L 
 

I n t e r n a l 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝜎𝜎𝑡𝑡−12  (1) 

𝜀𝜀𝑡𝑡 = 𝜎𝜎𝑡𝑡𝜂𝜂𝑡𝑡  

𝜂𝜂𝑡𝑡  

𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = 𝜔𝜔 + (𝛼𝛼 + 𝛽𝛽)𝜎𝜎𝑡𝑡2. 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝜎𝜎𝑡𝑡−12 + 𝛾𝛾𝑋𝑋𝑡𝑡−1 

𝑋𝑋  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12 + 𝛾𝛾(ln𝑋𝑋𝑡𝑡−1 − E[ln𝑋𝑋𝑡𝑡−1]). 

𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = Λ𝜎𝜎𝑡𝑡
2𝛽𝛽  

Λ = exp(𝜔𝜔) exp(−𝛼𝛼√2𝜋𝜋)exp (
𝛼𝛼2
2 ) [2Φ(𝛼𝛼)].  

𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 
𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 
𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 

ℎ1𝑡𝑡  

ℎ2𝑡𝑡  

ℎ𝑡𝑡 

ℎ̂𝑡𝑡: 

E[ℒ(ℎ𝑡𝑡, ℎ1,𝑡𝑡)]  ⋛ E[ℒ(ℎ𝑡𝑡, ℎ2,𝑡𝑡)] ⇔ E[ℒ( ℎ̂𝑡𝑡, ℎ1,𝑡𝑡)]  ⋛ E[ℒ( ℎ̂𝑡𝑡, ℎ2,𝑡𝑡)] 

ℎ̂𝑡𝑡  

E[ ℎ̂𝑡𝑡|ℱ𝑡𝑡−1] =  ℎ𝑡𝑡.  

 

ℒ(�̂�𝜎2, ℎ; 𝑏𝑏) =   

{
 
 

 
 (𝑏𝑏 + 1)

−1(𝑏𝑏 + 2)−1(�̂�𝜎2𝑏𝑏+4 − ℎ𝑏𝑏+2) − (𝑏𝑏 + 1)−1ℎ𝑏𝑏+1(�̂�𝜎2 − ℎ) for 𝑏𝑏 ∉ {−1,−2}

ℎ − �̂�𝜎2 + �̂�𝜎2ln �̂�𝜎
2

ℎ for 𝑏𝑏 = −1
�̂�𝜎2
ℎ − ln �̂�𝜎

2

ℎ − 1 for 𝑏𝑏 = −2

. 

 

ℒ(�̂�𝜎2, ℎ)QLIKE =  ln(ℎ) + 
�̂�𝜎2
ℎ . 

 

for any proxy 

I N T E R N A L 
 

I n t e r n a l 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝜎𝜎𝑡𝑡−12  (1) 

𝜀𝜀𝑡𝑡 = 𝜎𝜎𝑡𝑡𝜂𝜂𝑡𝑡  

𝜂𝜂𝑡𝑡  

𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = 𝜔𝜔 + (𝛼𝛼 + 𝛽𝛽)𝜎𝜎𝑡𝑡2. 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝜎𝜎𝑡𝑡−12 + 𝛾𝛾𝑋𝑋𝑡𝑡−1 

𝑋𝑋  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12 + 𝛾𝛾(ln𝑋𝑋𝑡𝑡−1 − E[ln𝑋𝑋𝑡𝑡−1]). 

𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = Λ𝜎𝜎𝑡𝑡
2𝛽𝛽  

Λ = exp(𝜔𝜔) exp(−𝛼𝛼√2𝜋𝜋)exp (
𝛼𝛼2
2 ) [2Φ(𝛼𝛼)].  

𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 
𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 
𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 

ℎ1𝑡𝑡  

ℎ2𝑡𝑡  

ℎ𝑡𝑡 

ℎ̂𝑡𝑡: 

E[ℒ(ℎ𝑡𝑡, ℎ1,𝑡𝑡)]  ⋛ E[ℒ(ℎ𝑡𝑡, ℎ2,𝑡𝑡)] ⇔ E[ℒ( ℎ̂𝑡𝑡, ℎ1,𝑡𝑡)]  ⋛ E[ℒ( ℎ̂𝑡𝑡, ℎ2,𝑡𝑡)] 

ℎ̂𝑡𝑡  

E[ ℎ̂𝑡𝑡|ℱ𝑡𝑡−1] =  ℎ𝑡𝑡.  

 

ℒ(�̂�𝜎2, ℎ; 𝑏𝑏) =   

{
 
 

 
 (𝑏𝑏 + 1)

−1(𝑏𝑏 + 2)−1(�̂�𝜎2𝑏𝑏+4 − ℎ𝑏𝑏+2) − (𝑏𝑏 + 1)−1ℎ𝑏𝑏+1(�̂�𝜎2 − ℎ) for 𝑏𝑏 ∉ {−1,−2}

ℎ − �̂�𝜎2 + �̂�𝜎2ln �̂�𝜎
2

ℎ for 𝑏𝑏 = −1
�̂�𝜎2
ℎ − ln �̂�𝜎

2

ℎ − 1 for 𝑏𝑏 = −2

. 

 

ℒ(�̂�𝜎2, ℎ)QLIKE =  ln(ℎ) + 
�̂�𝜎2
ℎ . 

 

 such that 

I N T E R N A L 
 

I n t e r n a l 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝜎𝜎𝑡𝑡−12  (1) 

𝜀𝜀𝑡𝑡 = 𝜎𝜎𝑡𝑡𝜂𝜂𝑡𝑡  

𝜂𝜂𝑡𝑡  

𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = 𝜔𝜔 + (𝛼𝛼 + 𝛽𝛽)𝜎𝜎𝑡𝑡2. 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝜎𝜎𝑡𝑡−12 + 𝛾𝛾𝑋𝑋𝑡𝑡−1 

𝑋𝑋  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12  

ln 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝜂𝜂𝑡𝑡−1| − E[|𝜂𝜂𝑡𝑡−1|]) + 𝛽𝛽ln𝜎𝜎𝑡𝑡−12 + 𝛾𝛾(ln𝑋𝑋𝑡𝑡−1 − E[ln𝑋𝑋𝑡𝑡−1]). 

𝜎𝜎𝑡𝑡+1|t2 = E[𝜎𝜎𝑡𝑡+12 |ℱ𝑡𝑡] = Λ𝜎𝜎𝑡𝑡
2𝛽𝛽  

Λ = exp(𝜔𝜔) exp(−𝛼𝛼√2𝜋𝜋)exp (
𝛼𝛼2
2 ) [2Φ(𝛼𝛼)].  

𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 
𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 
𝐻𝐻0: 𝛾𝛾𝑅𝑅𝑅𝑅 = 0 

ℎ1𝑡𝑡  

ℎ2𝑡𝑡  

ℎ𝑡𝑡 

ℎ̂𝑡𝑡: 

E[ℒ(ℎ𝑡𝑡, ℎ1,𝑡𝑡)]  ⋛ E[ℒ(ℎ𝑡𝑡, ℎ2,𝑡𝑡)] ⇔ E[ℒ( ℎ̂𝑡𝑡, ℎ1,𝑡𝑡)]  ⋛ E[ℒ( ℎ̂𝑡𝑡, ℎ2,𝑡𝑡)] 

ℎ̂𝑡𝑡  

E[ ℎ̂𝑡𝑡|ℱ𝑡𝑡−1] =  ℎ𝑡𝑡.  

 

ℒ(�̂�𝜎2, ℎ; 𝑏𝑏) =   

{
 
 

 
 (𝑏𝑏 + 1)

−1(𝑏𝑏 + 2)−1(�̂�𝜎2𝑏𝑏+4 − ℎ𝑏𝑏+2) − (𝑏𝑏 + 1)−1ℎ𝑏𝑏+1(�̂�𝜎2 − ℎ) for 𝑏𝑏 ∉ {−1,−2}

ℎ − �̂�𝜎2 + �̂�𝜎2ln �̂�𝜎
2

ℎ for 𝑏𝑏 = −1
�̂�𝜎2
ℎ − ln �̂�𝜎

2

ℎ − 1 for 𝑏𝑏 = −2

. 

 

ℒ(�̂�𝜎2, ℎ)QLIKE =  ln(ℎ) + 
�̂�𝜎2
ℎ . 

 

. 

In particular, the author shows the entire subset of robust and 
homogenous loss functions 

I N T E R N A L 
 

I n t e r n a l 

p.5 equation breakdown 

Option 1 (preferred) 

In particular, the author shows the entire subset of robust and homogenous loss functions ℒ(𝜎𝜎𝜎𝜎�2, ℎ; 𝑏𝑏𝑏𝑏) is 
given by the following family: 

• ℎ − 𝜎𝜎𝜎𝜎�2 + 𝜎𝜎𝜎𝜎�2ln 𝜎𝜎𝜎𝜎�2

ℎ
 for 𝑏𝑏𝑏𝑏 = −1 

• 𝜎𝜎𝜎𝜎�2

ℎ
− ln 𝜎𝜎𝜎𝜎�2

ℎ
− 1 for 𝑏𝑏𝑏𝑏 = −2 

• (𝑏𝑏𝑏𝑏 + 1)−1(𝑏𝑏𝑏𝑏 + 2)−1�𝜎𝜎𝜎𝜎�2𝑏𝑏𝑏𝑏+4 − ℎ𝑏𝑏𝑏𝑏+2� − (𝑏𝑏𝑏𝑏 + 1)−1ℎ𝑏𝑏𝑏𝑏+1(𝜎𝜎𝜎𝜎�2 − ℎ) for 𝑏𝑏𝑏𝑏 ∉ {−1,−2}. 

 

 

Option 2, if the equation in the third bullet point does not fit in one column, please break it as follows: 
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 Such a function is very popular when evaluating volatility 
forecasts as it is derived from the Gaussian likelihood of the 
conditional volatility equation:
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Evaluating volatility forecasts

Following Diebold and Mariano (1995) and West (1996), we 
propose testing for the significance of better forecast ability 
between our eight selected models. To do so, we fix the training 
set as data from 2000 to 2017 and our test set as data from 2018 
to 2019. We re-estimate our models every 22 points, meaning that 
22 consecutive one-day ahead forecasts are produced before 
re-evaluating the parameters. We select the QLIKE loss function 
from the set of robust functions derived by Patton (2011) as it is 
less sensitive to outliers than MSE. However, one should keep in 
mind that the QLIKE loss function is asymmetrical and as such can 
tend to favour positively biased forecasts. 

Table 2 presents the results of the comparison between the 
competing models presented in the previous section. A plus sign 
means that the model in the column is significantly better at 
forecasting volatility than the model in the row, an equal sign 
means that one cannot discriminate between the two, and a minus 
sign means that the model on the row is significantly better than 
the model in the column. 

For example, the EGARCH model augmented with the range-based 
volatility outperforms both the standard GARCH and EGARCH 
models, is not significantly different from the GARCH-RB model 
and is outperformed by the models including both range-based 
and realised volatility measures as covariates. Overall, it is striking 
to see how standard models are dominated by models augmented 
by either the range-based or realised volatility measure. It is, 
however, difficult to discriminate between the GARCH and the 
EGARCH frameworks.
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GARCH + + + – + + +
GARCH-RB + + – = + +
GARCH-RV + – – = +
GARCH-X – – – =
EGARCH + + +
EGARCH-RB + +
EGARCH-RV +

TAB. 2 FORECASTING ABILITY OF THE COMPETING MODELS 
BASED ON THE DIEBOLD-MARIANO TEST

Source: LOIM.



For professional investor use only. Please read important information at the end of this document.
Lombard Odier Investment Managers · MARS: the benefits of using range-based measures to forecast volatility · May 2023Page 6/8

MARS: the benefits of using range-based measures to forecast volatility

Source: LOIM.
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FIG. 2 EMPIRICAL AND FORECASTED TERM STRUCTURE OF 
ANNUALISED VOLATILITY
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Although forecasting one-day ahead volatility is essential to some 
investment strategies, most portfolio constructions require 
forecasting over a longer horizon, for example at the monthly 
frequency. Therefore, one must usually generate multiple 
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day 
ahead forecasts and aggregate them (see e.g., De Nard et al. 
(2022)). In that exercise, standard GARCH models suffer from a 
well-known limitation: the estimated parameters are often found to 
be such that 
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, the so-called near-integration case. 
As those parameters define the mean-reversion speed of the 
estimated volatility process, GARCH models exhibit a slow 
decaying pattern, as noted by Mikosch and Stărică (2004), that 
may be inadequate to capture the true term structure of volatility. 

On that matter, figure 2 shows strong arguments in favour of using 
intraday-based measures as exogenous variables when forecasting 
over longer horizons. In the chart, the red line presents the average 
term structure of the realised volatility from the instantaneous to 
the 25-day frequency in periods of high (left-hand figure) and low 
(right-hand figure) volatility.2 Using the parameters obtained over 
the whole sample for the different GARCH models presented in 
Table 1, we compute the forecasted term structure of the 
competing GARCH models. It can be seen that in both periods,  
the GARCH (blue line) behaves poorly as the near-integration 
implies a decay toward the long-term variance that is too slow 
compared to the empirical decay of the realised variance. 

Interestingly, the inclusion of the exogenous variable clearly 
mitigates this issue as the term structure of the GARCH-RB and 
GARCH-RV models appear to be more consistent and closer to the 
empirical behaviour. This improvement could be linked to the 
ability of the exogenous variable to mitigate the effect of imposing 
constant parameters in the conditional volatility equation, leading 
to overly persistent models as suggested by Hillebrand (2005).

Forecasting over longer horizons

2 Periods of high and low volatility are obtained by sampling realised volatility paths into 5 groups based on the value of the realised volatility at the first day of the considered path. The top (respectively 
bottom) quintile thus represents paths with the highest (lowest) volatility. 
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Conclusion

In addition to featuring strong statistical properties, as discussed 
in the previous edition of our Multi-Asset Research Series, 
range-based volatility measures provide a significant edge when 
forecasting volatility. Assessing that edge might, however, be more 
difficult than anticipated as in-sample, standard testing procedures 
must be modified to tackle statistical issues, while out-of-sample, 
the computation of forecasts’ losses is rendered complex by the 
latent nature of the volatility process. 

In this white paper, we review state of the art techniques to handle 
such difficulties and illustrate the benefits of volatility measures 

based on intraday data when forecasting daily or monthly volatility 
for the S&P 500 over the last 20 years. Validation across 
instruments and asset classes are excluded for the sake of brevity. 

Further research will address the economic value of enhanced 
volatility forecasts in the context of risk-based portfolios. Indeed, 
there is no guarantee that a statistically better model necessarily 
yields economically better outcomes when used for portfolio 
construction, a topic we will investigate in the next issue of our 
Multi-Asset Research Series.
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