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MARS: A primer on range-based volatility estimators

More recently, the availability of intraday price data of financial 
assets buttressed the emergence of a third area of research: 
realised volatility where the measure is a function of high-
frequency returns. Although such measures feature good 
theoretical properties and mitigate misspecification risk as they 
are model-free, they are difficult to use due to limited availability, 
the high financial and technical costs of intraday data as well the 
pitfalls of microstructure noise and its impact on such measures. 

In this white paper, we investigate how range-based volatility 
estimators can help proxy intraday realised volatilities. The first section 
presents the realised volatility framework and explores the advantages 
and disadvantages of such measures. The second section introduces 
popular range-based estimators and discusses their benefits in 
overcoming the shortcomings of high-frequency data-based 
measures. The third section illustrates the favourable statistical 
properties of the proposed range-based estimators. The final section 
concludes and surveys potential future research perspectives.

Introduction

Modelling the volatility of asset returns has arguably been one  
of the most prolific subjects in financial literature, from both 
theoretical statistical and more empirical investment-based points 
of view. Estimating volatility is crucial to risk management and 
portfolio construction, especially to risk-based investors.  
Therefore, since the 1980s multiple studies have been undertaken 
of this unobservable, time-varying process that underlies financial 
time series. 

Two very influential solutions were developed in parallel. The first 
was the autoregressive conditional heteroskedastic model of Engle 
(1982) and its suite of extensions such as the prominent GARCH 
models. The second was based on the study of derivatives markets 
and the observation of the implied volatility surface priced by 
market participants. Both solutions suffer, however, from a 
misspecification risk: the first solution is a parametric model that 
may fit inadequately with the underlying data and the second is 
derived from pricing models. 
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Realised volatilities are ex-post measures constructed at a low 
frequency (for example a day, or a month) using the squared 
returns sampled at a higher frequency over the relevant horizon 
(for example 5-minute time increments over a day, or daily returns 
over a month). Let us denote 𝜎𝜎RV,𝑡𝑡
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 is the sampling step (for example 5-minute 
increments), W is the number of intervals in a trading day  
and 
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 denotes the return of the assets over the w-th 
interval. Although seemingly extremely simple to build, this 
estimator benefits from an important theoretical result that 
helped popularise this framework in the academic literature:  
the estimator is theoretically free of measurement errors as  
the sampling step 

𝜎𝜎RV,𝑡𝑡
2  

∆ 

𝑟𝑟𝑡𝑡−1+𝑤𝑤∆ 

𝜎𝜎RV,𝑡𝑡
2 = ∑ 𝑟𝑟𝑡𝑡−1+𝑤𝑤∆

2
𝑊𝑊

𝑤𝑤=1
 

𝜎𝜎HL,𝑡𝑡
2 = 1

4 log 2 [log (H𝑡𝑡
L𝑡𝑡

)]
2

 

log(1 + 𝑟𝑟𝑡𝑡) = log ( O𝑡𝑡
𝐶𝐶𝑡𝑡−1

) + log (C𝑡𝑡
O𝑡𝑡

) 

𝜎𝜎OHLC,𝑡𝑡
2 = 𝑎𝑎

𝑓𝑓 [log ( O𝑡𝑡
𝐶𝐶𝑡𝑡−1

)]
2

+ 1 − 𝑎𝑎
1 − 𝑓𝑓 {[log (H𝑡𝑡

L𝑡𝑡
)]

2
− (2 log 2 − 1) [log (C𝑡𝑡

O𝑡𝑡
)]

2
} 

𝑎𝑎  𝑓𝑓 

1
4 log 2  

𝑓𝑓 = 6.5/24 

𝑎𝑎 = 0.17. 

𝑟𝑟𝑡𝑡 = �̇�𝜎𝑡𝑡𝜀𝜀𝑡𝑡 

�̇�𝜎𝑡𝑡 

𝜀𝜀𝑡𝑡 

�̃�𝜎𝑡𝑡 = √𝜆𝜆�̃�𝜎𝑡𝑡−1
2 + (1 − 𝜆𝜆)𝑟𝑟𝑡𝑡

2 

𝜆𝜆 = 0.94 

�̃�𝜎OHLC,𝑡𝑡 = √𝜆𝜆�̃�𝜎OHLC,𝑡𝑡−1
2 + (1 − 𝜆𝜆)�̂�𝜎OHLC,𝑡𝑡

2     and   �̃�𝜎RV,𝑡𝑡 = √𝜆𝜆�̃�𝜎RV,𝑡𝑡−1
2 + (1 − 𝜆𝜆)�̂�𝜎RV,𝑡𝑡

2 , 

 

 

 

 tends to zero (Andersen et al. (2001)). 
Having access to high-frequency returns should thus yield an 
unbiased estimator of the daily variance process driving the 
price time series.

Additionally, Andersen et al (2001) and Barndorff-Nielsen and 
Shephard (2002) show that the realised volatility estimator has 
favourable empirical properties. In particular, it is highly 
persistent, making it attractive for volatility forecasting 
applications, as in Corsi (2009). Furthermore, the estimated 
volatility process is approximately log-normal and the 
standardised returns (the observed returns divided by the daily 
volatility) are empirically Gaussian, which greatly simplifies the 
derivation of risk measures. 

Although appealing, the relative simplicity of the daily realised 
volatility estimator features three problems: 

 · First, while theoretically sound, the estimator relies on the 
availability of well-measured intraday returns. This measure is thus 
only applicable to highly liquid assets such as major stocks, futures 
and foreign exchange, because either data do not exist for 
peripheral assets, or the low liquidity results in a large number of 
zero returns (see for example Francq and Sucarrat (2023))

 ·  Second, the presence of microstructure noise and jumps in asset 
prices (e.g. on macro announcements or earnings releases) can 
make the selection of the intraday sampling frequency as much a 
science as an art. Jumps and seasonality can have a tremendous 
impact on the quality of the volatility estimates 

 ·  Finally, even if data are available, the sampling of intraday 
returns from tick data are highly computationally challenging and 
require sophisticated statistical attention as noted by Barndorff-
Nielsen et al. (2009) and De Nard et al. (2022). This translates 
into a high implementation cost that is impacted by the 
development of an IT infrastructure able to handle large datasets 
efficiently, and the high fees attached to the intraday database, 
especially if both temporal and cross-sectional depth is sought 

To circumvent these issues, we focus on range-based volatility 
estimators that enrich standard close-to-close data with intraday 
information on the path of the price series. The idea of range-
based models is to harvest intraday patterns without having to 
consider the continuous sample price path, by studying ranges 
formed by the maximum and minimum prices on a trading day  
(the so-called high and low). Range-based measures of volatility 
offer an appealing middle point between close-to-close data used 
in GARCH models and high-frequency intraday data, as illustrated 
recently by Baltas and Kosowski (2020).

Realised volatility – the good, the bad and the implementation toll 
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Range-based volatility measures –  
an intraday measure with only three additional data points 

A first attempt to leverage ranges data was proposed by Parkinson 
(1980) who estimated the volatility from daily highs and lows only, 
rather than the standard close-to-close returns. This estimator 
formula is 
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Garman and Klass (1980) corrected the squared log-ratio of the 
range with an additional term accounting for the close-to-open 
price ratio. In particular, they note that the close-to-close log 
return is given by
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The success of realised volatility measures computed on intraday 
data arises from the ability of the estimator to capture important 
stylised facts about financial returns while being model-free. In 
particular, it efficiently filters out the noise in the squared returns 
series, captures the persistence in the volatility, and adequately 
captures the tails of the returns distribution. Interestingly, range-
based estimators empirically share most of the same features, 
without the implementation costs and issues described earlier. 

Figure 1 compares the dispersion of daily volatility measured using 
close-to-close returns and the dispersion of daily volatility 
computed using the Garman and Klass estimator, both against the 
realised volatility computed using 5-minute time increments on the 
S&P 500 series. The proximity between the range-based and the 
realised volatilities is striking (with a coefficient of determination, 
or R2, around 70%), while the estimator based on close-to-close 
returns appears much more dispersed. This illustrates the ability of 
the range-based measures to incorporate intraday patterns 
efficiently with only two additional data points.

Another interesting feature of realised volatility estimators is their 
ability to capture the tail behaviour of the underlying returns 
process. It is well-known that the empirical distribution of financial 

Some empirical properties of range-based volatility estimators
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 the 
innovations that are centered with unit variance. One should note 
that the distribution of the returns might exhibit a heavy tail, even 
if the innovations distribution is Gaussian. Actually, the intraday-
based realised variance is able to capture the tail event so that, 
empirically, the estimated 
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εresembles a Gaussian white noise 
(see e.g. Andersen et al. (2001)). This presents a remarkable 
advantage when computing conditional risk measures as the 
statistics are often a function of the innovations cumulated density 
function – for example, a VaR is obtained by multiplying a quantile 
of the distribution of 
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. 

Alternatively, when considering a GARCH-type model, the 
estimated residuals are often found to present heavy tails, which 
renders the derivation of risk measures more involved (see Francq 
and Zakoïan (2015)). Figure 2 presents the empirical distribution 
of the innovations when the true volatility process of the S&P 500 
returns is estimated with a range-based volatility measure and a 
realised volatility model computed using 5-minute returns. The 
range-based volatility residuals are shown to present similar 
properties to the ones obtained from intraday data.

returns is often far from Gaussian, as it presents heavy tails. 
This stylised fact is often well mimicked by dynamic volatility 
models where the return process is given by
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Source: LOIM. For illustrative purposes only.
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. This persistence parameter implies a half-life 
coefficient of approximately 11.2 days: the mean-reversion of the 
close-to-close volatility estimator is slow. In comparison, if one 
defines the EWMA volatility estimators based on range-based 
volatility and high frequency-based realised volatility as
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their respective half-life coefficients for a similar level of 
dispersion are approximately 5.7 and 3.3 days. Figure 4 
illustrates the superior reactivity of the estimators based on 
intraday data when compared to the measure using close-to-
close returns. Focusing on the volatility shock of February 2018 
on S&P 500 returns, we see that the range-based estimator has  
a faster volatility decay than the standard RiskMetrics model, 
while still being very reactive in case of new market events.

Finally, an important feature of a model is its ability to forecast 
volatility. This relates to the persistence of the estimator as the higher 
the persistence, the more informative past values are to the future. 
As noted by Engle and Patton (2001), a good volatility model should 
thus present high persistence. Figure 3 presents the auto-
correlogram of the estimated volatility processes based on close-to-
close returns, range-based estimation, and 5-minute returns for the 
S&P 500. Again, we see that the range-based estimator behaves in a 
similar manner to the high-frequency based measure. On the 
contrary, the measure based on close-to-close returns appears to 
show moderate persistence, as it decays fast towards zero.

Importantly, it is noteworthy that the persistence of the estimator does 
not translate into a lack of reactivity – a common critique of volatility 
measures based on close-to-close returns. A standard benchmark 
volatility model for close-to-close returns is the exponentially weighted 
moving average (EWMA) proposed in the famous RiskMetrics 
framework where the volatility updating formula is
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Source: LOIM. For illustrative purposes only. Vertical lines indicate the errors bars at the  
95% confidence level.
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log(1 + 𝑟𝑟𝑡𝑡) = log ( O𝑡𝑡
𝐶𝐶𝑡𝑡−1

) + log (C𝑡𝑡
O𝑡𝑡

) 

𝜎𝜎OHLC,𝑡𝑡
2 = 𝑎𝑎

𝑓𝑓 [log ( O𝑡𝑡
𝐶𝐶𝑡𝑡−1

)]
2

+ 1 − 𝑎𝑎
1 − 𝑓𝑓 {[log (H𝑡𝑡

L𝑡𝑡
)]

2
− (2 log 2 − 1) [log (C𝑡𝑡

O𝑡𝑡
)]

2
} 

𝑎𝑎  𝑓𝑓 

1
4 log 2  

𝑓𝑓 = 6.5/24 

𝑎𝑎 = 0.17. 

𝑟𝑟𝑡𝑡 = �̇�𝜎𝑡𝑡𝜀𝜀𝑡𝑡 

�̇�𝜎𝑡𝑡 

𝜀𝜀𝑡𝑡 

�̃�𝜎𝑡𝑡 = √𝜆𝜆�̃�𝜎𝑡𝑡−1
2 + (1 − 𝜆𝜆)𝑟𝑟𝑡𝑡

2 

𝜆𝜆 = 0.94 

�̃�𝜎OHLC,𝑡𝑡 = √𝜆𝜆�̃�𝜎OHLC,𝑡𝑡−1
2 + (1 − 𝜆𝜆)�̂�𝜎OHLC,𝑡𝑡

2     and   �̃�𝜎RV,𝑡𝑡 = √𝜆𝜆�̃�𝜎RV,𝑡𝑡−1
2 + (1 − 𝜆𝜆)�̂�𝜎RV,𝑡𝑡

2 , 
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Conclusion 

In short, using range-based estimators can help obtain well-
behaved volatility measures. These measures can replicate most of 
the empirical properties of realised volatility measures based on 
high-frequency data, without the computational burden of handling 
large datasets.

Prior to implementing these in an investment framework, two more 
areas of investigation are necessary, namely: can such measures 
help us to better forecast risk? And can such measures improve 
(risk-adjusted) performance? These topics will be covered in the 
next two editions of MARS.
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